Telegram Group & Telegram Channel
Объясните, как используется энтропия в процессе построения дерева решений? Что ещё может использоваться вместо энтропии?

Энтропия измеряет непредсказуемость реализации случайной величины, или иными словами неопределённость в данных.

🌲 В контексте построения дерева-классификатора объекты — это случайные величины, которые могут принимать значение либо первого, либо второго класса. Если случайная величина принимает только одно значение, то она абсолютно предсказуема, и энтропия равна нулю. Если энтропия близка к единице, это значит, что случайная величина непредсказуема.

При построении дерева мы стремимся разбить объекты так, чтобы с получившимися группами энтропия была минимальной. Пример:
🟡 Допустим, у нас есть по 25 точек каждого класса — всего 50. Сначала мы выбираем разбиение, например, по X <= 5. Тогда в левую часть попадают 25 точек класса 0 и 12 точек класса 1, а в правую — ноль точек класса 0 и 13 точек класса 1. Энтропия левой группы равна 0.9, а правой — нулю. Это логично, ведь в правой группе все объекты принадлежат только одному классу, неопределённости нет.
🟡 Мы сделаем ещё несколько разбиений и выберем из них то, которое радикальнее всего уменьшит общую неопределённость системы.

🌲 Помимо энтропии можно использовать критерий Джини. Он представляет собой вероятность того, что случайно выбранный объект из набора будет неправильно классифицирован, если его случайно пометить согласно распределению меток в подвыборке.

#junior
#middle



tg-me.com/ds_interview_lib/126
Create:
Last Update:

Объясните, как используется энтропия в процессе построения дерева решений? Что ещё может использоваться вместо энтропии?

Энтропия измеряет непредсказуемость реализации случайной величины, или иными словами неопределённость в данных.

🌲 В контексте построения дерева-классификатора объекты — это случайные величины, которые могут принимать значение либо первого, либо второго класса. Если случайная величина принимает только одно значение, то она абсолютно предсказуема, и энтропия равна нулю. Если энтропия близка к единице, это значит, что случайная величина непредсказуема.

При построении дерева мы стремимся разбить объекты так, чтобы с получившимися группами энтропия была минимальной. Пример:
🟡 Допустим, у нас есть по 25 точек каждого класса — всего 50. Сначала мы выбираем разбиение, например, по X <= 5. Тогда в левую часть попадают 25 точек класса 0 и 12 точек класса 1, а в правую — ноль точек класса 0 и 13 точек класса 1. Энтропия левой группы равна 0.9, а правой — нулю. Это логично, ведь в правой группе все объекты принадлежат только одному классу, неопределённости нет.
🟡 Мы сделаем ещё несколько разбиений и выберем из них то, которое радикальнее всего уменьшит общую неопределённость системы.

🌲 Помимо энтропии можно использовать критерий Джини. Он представляет собой вероятность того, что случайно выбранный объект из набора будет неправильно классифицирован, если его случайно пометить согласно распределению меток в подвыборке.

#junior
#middle

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/126

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Библиотека собеса по Data Science | вопросы с собеседований from ca


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA